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1. Introduction

From the customers’ point of view, the main aim of a water distri-
bution system (which is further abbreviated as WDS) is to deliver wa-
ter, moreover – water of desirable quality and in necessary quantity. 
Therefore, different maintenance services have to be performed, e.g., 
broken or simply malfunctioned pipes or other parts of a WDS should 
be repaired or replaced. Because water is an indispensable good for 
humans, therefore also scientific literature devoted to reliability of 
water distribution systems is abundant. Firstly, let us mention reviews 
of various methods, approaches and literature, which can be found 
in, e.g., [15,28,29]. The papers themselves are very varied – some 
of them concern hydraulic and physical characteristics of parts of a 
WDS (see, e.g., [4,17]), other discuss rather a “macro-management” 
of a WDS rehabilitation problem (see, e.g., [12,22]) or only a ”micro-
management” scale (e.g., for a single building, see [1]). Even some 
monitoring systems for failures detection in a WDS are proposed (see, 
e.g., [23]).

Usually, if maintenance costs for a WDS are considered, planning 
for a relatively long-time horizon should be taken into account. Such 
a time interval covers 20, 50 or even 60 years (see, e.g., [12]). Of 
course, one unit of money, which is paid now, and the same unit in 
50-60 years, are not equal. Therefore, an influence of a future / present 
value of the money onto a calculation of the maintenance costs should 
be taken into account. However, most of the authors apply only a con-
stant interest rate, as a discount factor, to calculate a present value of 
future cash flows. Such an assumption is, of course, too strong and 
unrealistic in practical situations. Therefore, in this paper I adopt a 
more realistic and complex model – a variable interest rate, which is 
described by the widely known one-factor Vasicek model.

Moreover, some model for intensities of malfunctions of parts of a 
WDS has to be assumed. As it is proposed in literature, it can be based 
on selected physical aspects of a pipe and numerical equations (like the 
Hazen-Williams equation, see, e.g., [12]), it can be described with some 
type of Markov or semi-Markov process (see, e.g., [13, 16, 26]) or mal-
functions are randomly generated using a hazard rate function (HRF). A 
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W niniejszej publikacji skupiam się na obliczeniu kosztów eksploatacji wodociągu (water distribution system – WDS), jeśli pod 
uwagę zostanie wzięta wartość pieniądza w czasie. W przeciwieństwie do klasycznego podejścia, zamiast stałej wartości stopy 
procentowej, zakładam stochastyczny proces stopy procentowej (w postaci jednoczynnikowego modelu Vasicka). Założenie to 
przedstawia niepewne, przyszłe zachowanie stopy procentowej w bardziej dokładny i realistyczny sposób. Momenty awarii po-
łączeń w WDS generowane są z wykorzystaniem metody Monte Carlo poprzez zastosowanie nowego typu funkcji intensywności 
uszkodzeń (hazard rate function – HRF), który zaproponowany został w niniejszej publikacji. Ponadto, jakość połączenia oraz 
ilość wcześniejszych uszkodzeń ma bezpośredni wpływ na statystyczne właściwości wprowadzonej HRF. Oprócz analizy wygene-
rowanych za pomocą symulacji wyników (takich jak koszty eksploatacji), użyta została metoda Kiefera-Wolfowitza w celu lepszego 
dopasowania jednego z parametrów WDS – deterministycznego i bezwarunkowego momentu wymiany każdego z połączeń (czyli 
wymiany planowanej). Zaprezentowane zostały również algorytmy zarówno dla symulowania momentów uszkodzeń przy użyciu 
zaproponowanej HRF, jak i dla kroku optymalizacyjnego. Ponadto, wykonana została analiza statystyczna kilku przykładów WDS 
dla dokładnych („crisp”) i rozmytych („fuzzy”) wartości parametrów.

Słowa kluczowe:	 system dystrybucji wody, koszty eksploatacji, wypukła funkcja intensywności uszkodzeń, 
wartość obecna pieniądza, metoda Kiefera-Wolfowitza, model jednoczynnikowy Vasicka.
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multilateral review of various HRFs can be found in [29]. In this paper 
I propose a new kind of a HRF, which can be easily adapted to real-life 
data and which is very efficient during the Monte Carlo simulations.

Very often in literature, some optimization procedure for minimi-
zation of the maintenance costs of a WDS is proposed. For example, 
the total costs of a renewal, risk and an unavailability of a WDS is 
given as one function of time and then minimised (see, e.g., [24]), dif-
ferent scenarios with and without replacement of pipes for the installa-
tion and repair costs with a damage and inconvenience cost multiplier 
are considered (see, e.g., [18]) etc. In the following, I also propose an 
optimization approach. During this procedure, the Kiefer-Wolfowitz 
algorithm is applied to find a minimum of the maintenance costs, if an 
unconditional replacement age of a pipe is our variable parameter.

Also some model of the previously mentioned maintenance 
costs has to be adopted. In literature, these costs are related to vari-
ous sources and models, like a rehabilitation of a pipe and breakage 
repair costs (see, e.g., [12]), an extra energy, water losses and a loss 
of revenues (see, e.g., [11]) etc. In this paper the costs are modelled 
using their constant and variable part. This second element is related 
to time, which is necessary to conduct a repair or a replacement of a 
malfunctioned pipe. However, in some papers such a concept (i.e., 
time of a service) is completely neglected. Such a simplification is 
possible (see, e.g., [29] for a more detailed discussion), but usually 
the relevant period is modelled by some random variable (like the ex-
ponential distribution, see, e.g., [11]). In the following, I also assume, 
that a time, which is necessary for a repair or a replacement, is given 
by some random distribution.

This paper can be seen as a further development of some ideas, 
which were previously discussed in [25,26], but it is also a proposition 
of completely new ones. Hence, my current contribution is fourfold.

Firstly, I propose a new kind of a hazard rate function, which de-
scribes the intensities of malfunctions of pipes in a WDS. Many dif-
ferent HRFs were discussed in literature, however, each of them has 
some significant disadvantages (see, e.g., [29] for a comprehensive 
review). The HRF, which is introduced in this paper, has some ap-
pealing features. It is V-shaped, so it models two different states of a 
connection: a starting burn-in period (immediately after a repair or an 
installation of a pipe) and a later wear-out period (when an intensity of 
malfunctions for a connection is higher than during its starting phase). 
This HRF also depends on a number of previous repairs of the given 
pipeline, so an increasing deterioration of a material, which is caused 
by recurring stresses of repairs, can be taken into account. Moreover, 
a relevant algorithm for a random generation of intervals of times be-
tween malfunctions is numerically very efficient and straightforward. 
Therefore, the Monte Carlo simulations, which are then based on this 
HRF, can be directly applied to simulate behaviour of a whole WDS. 
Furthermore, the parameters of this HRF can be easily fuzzified, 
which enables us to introduce an additional source of an imprecision 
and an uncertainty, other than a strictly probabilistic one. These fea-
tures should be highlighted, as important ones, when the introduced 
hazard rate function is compared to other HRFs.

Secondly, I adapt the Kiefer-Wolfowitz algorithm to find a mini-
mum of the total maintenance costs. This method allows me to decide 
about an optimal value of a deterministic and unconditional replace-
ment age, i.e., when it is better to replace a connection instead of 
its next, future repair. Because the mentioned algorithm directly uti-
lizes stochastic nature of simulations, the Monte Carlo method can 
be directly used to calculate necessary estimators in this approach. In 
this paper, I focus on the unconditional replacement age as a variable, 
which is considered in the optimization problem, but the presented ap-
proach can be extended to other parameters, which are important for 
decision makers. Because an output, which is simulated in the analy-
sis, behaves in a very varied and unpredictable way, I propose some 
practical alternation of the standard Kiefer-Wolfowitz algorithm. As 

it is pointed out in presented numerical examples, this optimization 
procedure can significantly lower the maintenance costs.

Thirdly, apart from a crisp case, I discuss a possible fuzzifaction 
of the parameters of the introduced HRF and of a model of the costs. 
As it is known (see, e.g., [3,6]), data can be imprecise and uncertain in 
real life situations. Moreover, sometimes it can not be appropriately 
modelled, if only a probabilistic approach is used. Therefore, I further 
develop an idea, which was discussed in [26], and some parameters 
of the assumed models are described by fuzzy numbers. It means, that 
they are not completely precise (i.e., “crisp”) but they are, in some 
way, imprecise (“near to / about”) and can be given as experts’ opin-
ions (even in a form of linguistic variables). For example, a cost of a 
repair is rather stated as “about 50 thousand (some unit of money)”, 
than as a total and accurate value before this repair will take place. 
And a fuzzy setting is widely used in an analysis of possible financial 
decisions (see, e.g., [20,21]).

Fourthly, in contrary to [25,26], a more sophisticated model of 
time intervals of transitions between the states of a pipeline is pro-
posed now. The intervals between the malfunctions are generated us-
ing the introduced HRF, and the times of repairs and replacements 
can be drawn from various probabilistic distributions. For a simplic-
ity of the analysis, I focus on the exponential distribution, but other 
densities can be easily applied in the proposed simulation approach. 
Moreover, this model of the states is directly related to a model of 
costs of maintenance services. I distinguish two types of these costs 
(separately for a repair and a replacement) with two parts for each 
of them – a constant part (which is independent of length of time of 
a service) and a variable part (which depends on a random value of 
time of a repair or a replacement). Therefore, the considered model is 
closer to practical situations.

It should be pointed out, that the stochastic model of the interest 
rate (i.e., the one factor-Vasicek model, which is assumed in this pa-
per) is directly embedded into the Monte Carlo simulations, as in [26]. 
To the best knowledge of the author, such an approach is still a new 
idea, which is not even considered in other papers. Whereas, there are 
significant differences in estimated values of costs and in other im-
portant results between models with a constant yield and with a vari-
able discount factor, which is, of course, a more realistic assumption. 
Some of these discrepancies were already highlighted in [26]. Now I 
continue this analysis and show, that a simplified approach (i.e., with 
a constant yield) leads to different solutions and statistical results for 
the calculated maintenance costs. Therefore, future decisions can be 
also invalid, if such a too simplified model is assumed.

This paper is organized as follows. In Section 2, a new type of a 
hazard rate function, which describes times of the failures of a con-
nection, is presented. A random generation procedure for a relevant 
density, which is based on this HRF, is also discussed. In Section 3, 
a model of possible states of an each connection with an additional 
parameter – deterministic and unconditional replacement age – is in-
troduced. Section 4 is devoted to a description of maintenance costs, 
which are divided into constant and variable parts. Section 5 presents 
the Kiefer-Wolfowitz algorithm, which is then applied to optimize 
the discounted value of the maintenance costs in examples in Section 
6. Apart from a numerical analysis of an example in a crisp case, a 
proposition of fuzzification of some parameters of the model is also 
examined using the Monte Carlo simulations. Results, which are ob-
tained in these examples, are statistically summarized then. The paper 
is concluded in Section 7 with some final remarks.

2. Model of failure intensities

Let us suppose, that a WDS is modelled by a graph of connections 
G. In this graph, each connection (i.e. a pipeline which is a part of 
the whole WDS) is represented as an edge, and possible sources or 
outflows are denoted by nodes. In the following, I focus only on the 
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edges of the graph G, i.e. the connections of the considered WDS. Let 
us assume, that these connections behave in a statistically independent 
way, i.e. there is no “information flow” between the connections and 
time of a malfunction of one pipe does not influence on quality and 
possible malfunctions of other connections.

Firstly, I assume that times of the failures for an each connection 
are described by a hazard rate function (HRF or simply a hazard func-
tion) λ(x | nr), given by the formula:
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where * *
0 1  0,   0,  0 ,   0,  0ra a x y α> > > > >  are parameters, which are re-

lated to the given type of a connection. Strictly speaking, such a HRF 
has a V-curve, linear shape (see Figure 1), for which:

0a−•	  is a directional component of a descending, linear part 
of the HRF (i.e., a left hand side of the function, for which 

)* 0, x x∈  ),

1a•	  is a directional component of an ascending, linear part of the 

HRF (i.e., a right hand side of the function, for which * x x≥ ),

( )* *, x y
•	

 is a point, where the HRF becomes an ascending linear 
function, instead of being a descending one,

rα•	  is a parameter of deterioration of the connection related to a 
single, previous malfunction,

rn•	  is a number of previous malfunctions of the connection, if 
there were repairs afterwards.

It is assumed that, when some connection is replaced with a com-
pletely new component, then 0rn =  is set for such a part. Hence, the 
parameter rα  reflects a level of fatigue, which is caused by previous 
malfunctions and repairs, without a replacement of such a connec-
tion. It directly increases a value of the hazard function λ(x|nr). The 

point ( )* *, x y , and especially the value *x , depends on time, when 
the HRF (1) changes its behaviour. In this point, instead of a burn-in 
period after some repair (or an installation of a new pipe), the con-
nection reaches its wear-out period (see also, e.g., [5] for a more 
detailed descriptions of such states). It means, that for the first part 
of (1) an intensity of the malfunctions decreases, and for the second 
part this value increases with passing time, which approximates real-
life situations in better way. Hence, the proposed function (1) can be 
used in straightforward manner to describe the intensity of malfunc-

tions, taking into account two completely different quality states and 
progress of connection fatigue, which is also related to the number 
of previous repairs rn . Therefore, this HRF can be better adjusted 
to real-life data.

From now on, for a simplicity of formulas, I use abbreviations:
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For a HRF, we have a general formula:
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where ( )f x  is a pdf (probability density function), ( ) ( ) 1   R x F x= −  

and ( )F x  is a cdf (cumulative density function), then in the case of 
(1), we get:
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where:

	
( ) ( )2 2* * * *

1 1 1 0 0
1 1            
2 2
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An exemplary plot of this density can be found in Figure 2. As it is 
seen, ( )f x  is a continuous function with a visible point of a change 

of its behaviour (which is given by the parameters * *  0.5,  1 x y= =  in 
this case).

Fig. 2. Exemplary plot of the introduced density

In Section 6, an analysis of a simulated output for times of mal-
functions given by the density (2) is presented. Therefore, it is neces-
sary to provide an efficient algorithm for a generation of random vari-
ables for such a pdf. It can be done using the composition method and 
the inversion method (see, e.g., [27] for an introduction and a review). 
In the composition method, a pdf ( )f x  is decomposed as:

	 ( ) ( )
1

    i i
i

f x f x p
=

= ∑ ,Fig. 1. Exemplary plot of the introduced HRF
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where, for an each 1,2,i = … , ( )  0if x ≥  is some density and  0ip ≥  
is a discrete probability. In the case of (2), we have:
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and the pdfs ( )1 f x  (for )* 0, x x∈ ), ( )2  f x   (for * x x≥ ) lead to rel-
evant inversions of their cdfs, which are equal to:
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Therefore, a simulation of random times of the failures is straight-
forward (see Algorithm 1). Moreover, because the inversion method 
is applied, the whole algorithm is numerically very efficient. None of 
the randomly generated points are rejected, as it is commonly seen in, 
e.g., the ROU (ratio-of-uniforms) method.

Because of a few parameters, which describe the formula (1), the 
introduced model of time of a failure can be applied in many various 
cases. Exemplary plots of the expected values for the relevant density 
(2) can be found in Figure 3, Figure 4 and Figure 5. As it is seen, the 
expected value of time of a failure is both a linear and non-linear func-
tion, which simplifies an adjustment to complex real-life data.

3. States of a connection

An each connection in time t can be in one of the following states: 
working, under repair, under replacement. It means, that immediately 
after some failure, a connection is repaired or replaced by a new one.

A random length of working time iWT , after a repair or a replace-
ment of the pipe and before a next malfunction, is given by (2). A 
length of repairing time iRT  (after a malfunction, when a connection 
is being repaired) can be modelled by various random distributions, 
e.g. the exponential distribution or the lognormal one. Of course, this 
distribution and its parameters should be fitted to real-life data, e.g. 
using statistical methods. The same applies for a length of replace-
ment time iPT  (i.e., after a malfunction, when a connection is being 
replaced with a new one).

As in [26], I introduce a deterministic and unconditional replace-
ment age *P . This value is used to decide, if instead of one more 
repair, the connection in question should be rather replaced. It means 
that, when:

Algorithm 1 (Generation procedure for the HRF)
Input: A set of the parameters of the HRF (1).
Output: A random time of a failure X.

Calculate 1 2, p p , which are given by (3);

Generate independent random values , U Y  from the uniform 

standard distribution [ ]0;1U ;

if 1 U p≤

( )1
1   X F Y−=  (see (4));

else

( )1
2   X F Y−=  (see (4));

end
return X

Fig. 3.	 Plot of the expected value (EX) for the introduced density as a function 
of 0a  and 1a .

Fig. 4.	 Plot of the expected value (EX) for the introduced density as a function 
of rα  and rn .

Fig. 5.	 Plot of the expected value (EX) for the introduced density as a function 

of *x  and *y .
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replacement in the case of ( )
,
j

P constc ), i.e. it is a fixed cost, and 

( ) ( ),   .j
R Varc  denotes a variable cost of a repair (or a replacement for 

( ) ( ),   .j
P Varc ), i.e. some function of length of this service. If the MC 

approach is applied, then the variable costs can be modelled in vari-
ous ways, e.g., an additional random distribution, which is related to 

iRT  or iPT , can be used.
As it was mentioned, I assume that the value of money depends 

on time in the considered setting. Therefore, the concept of a present 
value (or a future value), which is widely known in financial math-
ematics, is applied (see, e.g., [7,27]). It is especially useful, if we are 
interested in a long time horizon T  (like 20 or even 50 years)  for 
which the estimated costs of the maintenance services should be cal-
culated. And these costs, for different management decisions and pos-
sible scenarios, can be easily compared for the same, present time, 
i.e. 0t = . It leads to a straightforward way to select the best decision, 
taking into account a financial risk.

To calculate the present value of the total sum of the costs of re-
pairs and replacements:

	 ( ) ( )( )( )
,

     j
i

i j
PV c PV c t=∑ ,	 (6)

some model of an interest rate should be used, in order to find a dis-

counting factor ( ) .  PV  for each ( )( ) j
ic t . In the following, the one-

factor Vasicek model (see, e.g., [7]):

	 ( )t t tdr a b r dWσ= − +  ,	 (7)

is used, where tr  is a value of the interest rate at time t, tW  is the 
standard Brownian motion, and , ,a b σ  are parameters of this model. 
Moreover, b characterizes a long term mean level (i.e. the trajectory 

of tr  is directed to this value during its long run), a reflects speed of 
reversion towards b, and σ  is an instantaneous volatility (variability) 

of the trajectory introduced by the random component tW .
In the MC setting, a relevant iterative scheme for a generation of 

increments Δ tr  of the process (7) should be used (see, e.g., [7]). The 

values of tr  for the fixed moments 0 10 nt t t= < <…<  are given by:
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where 1 2, , , nZ Z Z…  are iid samples from N(0,1). Also a cumulative 
factor:
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which is necessary to evaluate the present value, can be easily ap-
proximated (see, e.g., [7,26,27] for a more detailed discussion).

As it is pointed out in [26], if a variable interest rate is assumed 
(like the one-factor Vasicek model in this paper), then obtained results 

	 *

1
     

j

i i
i

WT RT P
=

+ >∑ ,	 (5)

where 1, , jWT WT…  and 1, , jRT RT…  are working and repairing times 
after the last replacement of a connection, then this connection is re-
placed with a new one. Afterwards,   0rn =  is set in (1), so such a 
replacement “restarts” a deterioration process.

4. Maintenance costs

As it was noted in Section 2, it is possible to directly simulate the 
periods of the working times iWT  of the considered connection for 
the pdf given by (2). Also, if numerically feasible distributions for the 
repairing times iRT  and the replacement times iPT  are selected (like, 
e.g., the lognormal distribution), then the Monte Carlo approach can 
be applied. Furthermore,  the replacement condition (5) can be easily 
embedded in such a setup, without a necessity of conducting of com-
plex theoretical probabilistic calculations.

Hence, the MC approach can be applied to generate the subse-
quent states of each connection j, and then, in a similar way, to simu-
late behaviour of the whole WDS. From now on, I assume, that these 
connections behave in a statistically independent way. However, if 
there is some kind of dependency, the MC procedure can be also 
used. Easily seen, apart from , i iWT RT  and iPT , exact times of the 
malfunctions can be found, when the necessary maintenance services 
(i.e., replacements or repairs) begin. In the following, these times are 
denoted by 1 2, , t t … .

In this paper I focus only on the maintenance costs related to the 
replacements and the repairs. Of course, other types of costs (like 
costs of water losses, loss of revenues etc. – see, e.g., [5,11,12,18]) are 
commonly considered in the literature. Among others, I should also 
mention restoration and diagnostic costs. They are very important, es-
pecially for long time horizon of an analysis. Some of the mentioned 
costs can be easily taken into consideration using the MC approach. It 
seems, that this is also possible for the restoration and the diagnostic 
costs. However, due to nature of further assumptions in this paper, 
these costs can be rather related to the HRF itself, instead of time of a 
service (like a repair or a replacement). For example, after a restora-
tion of a connection, a value of rn  can be lowered or values of 0a  
and 1a  can be respectively changed for this connection. And an aim 
of such a change would be to increase length of a period to a next mal-
function given by (1). But still the simulation approach is appropriate 
in this case. Of course, incorporation of other types of the costs (like 
restoration costs) can have some influence on the obtained results.

I assume, that the mentioned costs depend on a type of a service 
(i.e., if it is a replacement or a repair), length of such a service and a 
type of the considered connection. Therefore we have:

	 ( )( ) ( ) ( ) ( ), ,      j jj
i iR const R Varc t c c RT= +  	

or

	
( )( ) ( ) ( ) ( ), ,      j jj

i P const P r iVac t c c PT= + ,

where ( )( ) j
ic t  denotes a total sum of costs for the given j-th connec-

tion and time it , when a necessary service begins, ( )
,
j

R constc  is a con-

stant value independent of length of a period for a repair (or for a 
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are different from an output for a model with a constant interest rate. I 
will also show these differences in examples in Section 6.

5. Optimization procedure

In numerical examples, which are presented in Section 6, I am 
interested in various statistical measures, which are important for an 
analysis of the maintenance costs. In practical situations, a decision 
maker is also confronted with different scenarios, concerning values 
of some parameters. Because of stochastic nature of the introduced 
process of the interest rate (7) and behaviour of the WDS itself, a rel-
evant optimization procedure is necessary. There are various methods, 
which can be used to solve the mentioned min-max problem with a 
stochastic background (see, e.g., [9]). However, in the following, I 
apply the Kiefer-Wolfowitz (KW) algorithm (see, e.g., [2]) with some 
alternations, which are necessary for the considered setting.

In general, an iteration scheme of the KW algorithm is based on 
a formula:

	 ( ) ( )( )1
ˆ ˆ  /  n n n n n n n nX X a f X c f X c c+ = − + − −  ,	 (8)

where 1X  is an initial value, na  and nc  are two real-valued, deter-

ministic tuning sequences, and ( )ˆ
n nf X c+ , ( )ˆ

n nf X c−  are estima-
tors (which are usually based on the MC approach) of a goal function 
( ).f  for n nX c+  and n nX c− . The aim of the sequence (8), which is 

produced by this algorithm, is to minimize the value of ( )f x , taking 
into account the decision parameter x. Speed and quality of a con-

vergence to this minimum depend on the tuning sequences na  and 

nc  (see, e.g., [2] for a more detailed discussion of some necessary 
requirements for these sequences).

Usually, the estimators ( )ˆ
n nf X c+ , ( )ˆ

n nf X c−  are based on 
only single Monte Carlo samples, which are drawn from the relevant 
functions ( ) ( ),n n n nf X c f X c+ − . But in some cases, a more so-
phisticated approach is necessary. As in the considered setting, a 

function ( )f x  can behave in a very varied and unpredictable way, 
because of its stochastic nature. Therefore, the mentioned estimators, 
which are calculated as standard Monte Carlo averages, should be 
based on larger samples. Additionally, it can be profitable to store es-
timated values of ( ).f  for previous steps of the algorithm, not only 
for the last one.

In the following, the numerical experiments are focused on an 
optimization of the maintenance costs, if the unconditional replace-
ment age *P  is a decision parameter in (8). Strictly speaking, my aim 
is to find:

	 ( )
*

min   
P

EPV c  ,	 (9)

i.e. a minimum of the expected, present value of the total sum (6), if 
*P  is a decision parameter. From a practical point of view, the uncon-

ditional replacement age is very significant for a decision maker, es-
pecially if a long time horizon is taken into account. Of course, other 
characteristics of the WDS can be also treated as decision parameters, 
but the presented approach is applicable in these cases, too.

6. Example of numerical analysis

Now I apply the KW algorithm and the Monte Carlo simulations 
to find an optimum value of the unconditional replacement age *P , 
which is a solution of the problem (9). In order to do this, I present a 
simplified example, but similar to a real-life case. In this analysis, the 
HRF, given by (1), is used to simulate times of the failures.

I will start from a general description of the parameters in Section 
6.1. Then, in Section 6.2, I will present assumed numerical values 
of these parameters for a strictly crisp case. These values are used 

further, in Section 6.3, to find an optimal value of *P  in the con-
sidered optimization problem. Also some other statistical measures 
of the maintenance costs are estimated there. In Section 6.4, I will 
discuss possible problems with suboptimality of the obtained solu-
tion. A dependency between the assumed model of an interest rate and 

the optimal solution for *P  is also considered there. Then, in Section 
6.5, I will recall basic definitions and notation concerning a fuzzy ap-
proach. This fuzzy approach will be used in two analyses afterwards: 
firstly, when some parameters of the introduced HRF are fuzzified 
(Section 6.6), and secondly, to decide, if the estimated output is more 
prone to impreciseness related to the constant or to the variable parts 
of the costs (Section 6.7). The results of all of the analyses will be 
summarized in Section 6.8. I will conclude this example with some 
remarks about a possibility of using the presented approach in practi-
cal application (Section 6.9).

6.1.	 General description of the parameters

Taking into account the previous considerations, the parameters 
of the whole model, which are used in simulations, can be divided 
into four groups:

parameters of the given type of the connection, which are re-1.	

lated to the HRF given by (1), i.e. * *
0 1, , , , , r ra a x y nα ,

parameters, which depend on the type of the connection, its 2.	
location etc., and they are related to the maintenance costs 

( ) ( ), , , ,,  , . , .R const P const R var P varc c c c  or to the lengths of times 
of necessary services (i.e. repairs and replacements), like pa-
rameters of the random distributions for iRT  and iPT ,
parameters of the interest rate model, which are related to the 3.	

financial setup (7), i.e. 0, , , r a b σ ,

other parameters, like 4.	 *P  and time range for the whole simu-
lation T.

6.2.	 Applied parameters for the crisp case

Firstly, I focus on the strictly crisp case. In a further numerical 
analysis, to simplify my considerations, I model a WDS, which con-
sists of 20 connections of one type of a pipe. Let us assume, that one 
year is time unit, and * *  0.5,  1 x y= = . It means, that after half of a year, 
the HRF of the time to a failure changes its behaviour and after a 
burn-in period, a connection is in its wear-out period. In general, these 
values can be given by some expert. And such a source combines an 
insight knowledge with a classical, probabilistic approach.

I also assume, that 0 1   1 a a= = . It means, that the linear parts in the 
function (1) lean at an angle of 45 degrees and, if there is no previous 
repairs, the expected value of time to a next malfunction is equal to 
0.715 of a year. This value can be easily found using numerical soft-
ware, like, e.g., Mathematica. As it is seen from (1), if there are some 
previous repairs, the whole HRF shifts upward by a multiplication of 

the parameter rα  and the number of the previous repairs rn . Let us 

assume, that 0.2rα = . Then, after one repair, the time to a next mal-
function is shortened to 0.635 (about 11%).
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The next set of the parameters is related to the maintenance costs. 
In the following analysis, I apply one monetary unit assumption and 
set ( ) ( ), , , ,1, 3, 100 , 100  R const P const R var P varc c c t t c t t= = = = . Then, 
the constant cost of a replacement is three times greater than the con-
stant cost of a repair, and the variable costs are linear functions of 
time, which is necessary for these services. Also, the variable cost of a 
replacement is the same as the relevant cost of a repair, which is equal 
to about 0.274 per day (plus the constant cost, which is paid once). 
Additionally, time of the maintenance service should be also modelled 
in some way. In the following, I apply the exponential random vari-

able to describe both the time of a repair (with a parameter Rλ  for its 

density) and the time of a replacement (with a parameter Pλ , respec-
tively). Other random distributions, like, e.g., the lognormal distribu-
tion, are also useful and have a significantly practical meaning in this 

area. In this case, I set 365Rλ =  (so, the expected value of the time of 

a repair is equal to one day) and 182.5Pλ =  (then, the expected value 
of the time of a replacement is equal to 2 days).

Of course, in practical applications the relevant parameters of the 
considered connections should be estimated from real data (or based 
on the experts’ opinions).

The last group of the parameters, which is mentioned in Section 
6.1, describes the interest rate model. For the one-factor Vasicek mod-
el, which is analysed in this paper, it is assumed that

	 0 0.1, 0.05, r 0.04, 0.001a b σ= = = =

and a very long fifty years horizon of the financial analysis of the 
maintenance costs is considered (i.e., 50T = ). Therefore, comparing 
with [26], even longer time period is taken into account.

6.3.	 Results of the optimization procedure in the crisp case

Now, when all of the necessary parameters are set, the KW algo-
rithm for finding the solution of the problem (9) can be started.

In the following analysis, I use *
0   5P =  as an initial value. As it was 

mentioned in Section 5, because of stochastic nature of the estimators 

( )*ˆ
n nf P c+ , ( )*ˆ

n nf P c− , the KW algorithm has to be slightly modi-

fied. Therefore, to calculate the values ( )*ˆ
n nf P c+ , ( )*ˆ

n nf P c− , 
  1 00 000m=  simulations are conducted for each of them and the rel-
evant Monte Carlo averages are found.

After 50 steps of the KW algorithm, an optimal value of 
*P  , which solves the problem (9) is achieved. In the considered case, 

it is equal to 3.58. Now, let us compare various statistical measures 

of the maintenance services for this optimal value ** 3.58P =  and the 

starting point *
0   5P = . I examine an estimator of the discounted costs 

of services (  ( )PV c ), an average number of repairs ( Rx ) and uncon-

ditional replacements ( Px ), a minimum cost of a repair ( min  Rc ) and 

an unconditional replacement ( min  Pc ), an average cost of repairs 

( Rc ) and replacements ( Pc ), a maximum cost of a repair ( max  Rc ) 

and a replacement ( max  Pc ), a standard deviation of costs of repairs 

( ( )Rsd c ) and replacements ( ( )Psd c ).

As it is seen from Table 1, (  ( )PV c ) is reduced about 3.39%, if 

the optimal value of *P  is used and a value of Rx  is reduced even 
more, about 14.21%. It means, that the overall discounted costs are 

now smaller and the repairs are more rare. In contrary, a value of Px  

is greater for **P  about 44.44%. Therefore, in this case, the more 
often unconditional replacements lead to a decrease of the number 
of repairs. Statistics for the cost of a single repair or a replacement 

are very similar for the both values of *P , so they do not affect the 
obtained conclusions.

6.4.	 The optimization procedure – additional remarks

Of course, if the KW algorithm is applied, it is possible, that in-
stead of an optimal point, some suboptimal value is found. However, 

it is not a case in the considered example. In Figure 6,  ( )PV c  is 

plotted as a function of *P  and denoted by circles. As it is seen, this 
function has a clear U-shape. On the other hand, Figure 7 allows us 
to analyse behaviour of the averages Rx  (a plot denoted by squares) 

Fig. 6.	 Plot of  ( )PV c  for the one-factor Vasicek model (circles) and a nomi-
nal value (triangles) as a function of *P

Table 1.	 Comparison of statistical measures of the maintenance services 
for the optimal value and the starting point

Measure ** 3.58P = *
0   5P =

 ( )PV c 1307.52 1353.36

Rx 1929.56 2266.41

Px 260 180

min Rc 1 1

max Rc 6.39567 6.22472

Rc 1.27371 1.27373

( )Rsd c 0.273725 0.273755

min Pc 3 3

max Pc 12.3977 12.4351

Pc 3.54815 3.54807

( )Psd c 0.547971 0.548069



Eksploatacja i Niezawodnosc – Maintenance and Reliability Vol. 20, No. 1, 2018 53

Science and Technology

and Px  (a plot denoted by diamonds). The average number of repairs 
grows rapidly fast, if it is compared to a slow decrease of the aver-
age number of replacements. Then, clearly, it is fruitful for a deci-

sion maker to choose the calculated optimal value of *P , instead of 
greater or lower one.

It was noticed in [26], that if a nominal value of the cash flow or a 
model with a constant yield is used, this leads to an incorrect estima-
tion of the costs of the maintenance services. Because now I consider 
an optimization approach, a similar problem should be formulated – if 

other optimal value of *P  will be found, when the model, which de-
scribes the cash flows, is changed? I apply the KW approach also for 
the model with nominal values of the cash flows (i.e., a value of one 
unit of money is constantly the same, there is no discounting). Then, 

the optimal value of *P  is calculated as 3.34, which is about 6.7% 

lower than ** 3.58P = .
Also averages of the costs can be compared. In Figure 6, apart 

from  ( )PV c , for the one-factor Vasicek model, a similar average for 

a nominal value of the cash flow as a function of *P  is plotted and 
denoted by triangles. As it is easily seen, if a value of money is not 
taken into account, the nominal average cost of the maintenance serv-

ices is overestimated and the optimal value of *P  is shifted to the left 
hand side.

6.5.	 Fuzzy approach – basic notation and definitions

As it is noticed in many papers (see, e.g, [6,8,10,26]), some sourc-
es of impreciseness can be easily modelled by a fuzzy approach, so a 
value of such an imprecise parameter can be based on expert’s knowl-
edge. This approach is especially very important, when data is sparse 
and various data analysis methods, like statistics, are not usable or 
even not possible. Then, taking into account opinions of the experts, 
the necessary parameters of the model can be described, e.g., as “the 
value of this parameter is about 5”. Because these opinions have not 
completely precise forms (like real numbers), fuzzy numbers are an 
obvious model to describe such statements.

In [26], an important step in an application of a fuzzy setting for 
simulations of the maintenance costs was made. Now, I conduct simi-
lar analysis, but for the new model of time of the failures, which was 
proposed in Section 2.

I start form basic definitions and notation concerning the fuzzy 
approach, which will be used in the further part of the paper. Addi-
tional details can be found in, e.g., [14].

For a fuzzy subset A  of the set of real numbers R I denote by Aµ


 its 

membership function [ ]: 0,1A Rµ →


 and by [ ] ( ){ }: AA x xα µ α= ≥


   

the α-level set of A  for ( ]0,1α ∈ . Then [ ]0A  is the closure of the 

set ( ){ }: 0Ax xµ >


. 

A fuzzy number a  is a fuzzy subset of R for which Aµ


 is a nor-
mal, upper-semicontinuous, fuzzy convex function with a compact 

support. Then for each [ ]0,1α ∈ , the α-level set [ ]a α  is a closed in-

terval of the form [ ] [ ] [ ],L Ua a aα α α =   , where [ ] [ ],L Ua a Rα α ∈  

and [ ] [ ]L Ua aα α≤ .
A left-right fuzzy number (which is further abbreviated as a 

LRFN) is a fuzzy number with the membership function of the form:

	 ( )

[ ]

[ ]

[ ]

,  ,

1,  ,

,  ,

0,  

a

x aL x a b
b a

x b c
x

d xR x c d
d c

otherwise

µ

 −  ∈  − 
 ∈= 

−  ∈  − 




,

where ] [, : 0,1 0,1L R  →   are non-decreasing functions, such that 

( ) ( )L 0  R 0 0= =  and ( ) ( )L 1 R 1  1 = = . A triangular fuzzy number, 

denoted further by [ ], ,a b c , is a LRFN with the membership function 
of the form:

	 ( )

[ ]

[ ]

,   ,

,   ,

0,  

a

x a x a b
b a
x cx x b c
b a

otherwise

µ

− ∈ −
−= ∈
−







.

In my further investigation, behaviour of a function ( )f x  plays 

a crucial role. In order to approximate a fuzzy output ( )f x   for some 

fuzzy parameter x , monotonicity of ( )f x  should be checked. 

If ( )f x  is an non-decreasing function, then for the given α , the 

left end point [ ]  Lf α  is approximated using the crisp value [ ]Lx α
 
. 

The same applies for [ ]  Uf α   and [ ]Ux α . In contrary, if ( )f x  is 
an non-increasing function, [ ] [ ],U Lx xα α  are applied to evaluate 

[ ] [ ]  ,    L Uf fα α    (see, e.g., [19,26]).

6.6.	 Numerical analysis for the fuzzified parameters * *,x y

After the strictly crisp case, its fuzzy counterpart can be dis-

cussed. First, I assume that * *,x y  are modelled by triangular fuzzy 
numbers and all of other parameters are given as crisp values, which 

are the same as in Section 6.2. As it was indicated, both *x  and 
*y  can be based on experts’ knowledge, therefore fuzzy numbers 

are obvious tool to model these parameters. In the following, I set 
[ ]*  0.25,0.5,0.75x =  and [ ]*  0.5,1,1.5y = . It means, that a horizontal 

coordinate of the point, where the introduced HRF (1), changes its 

Fig. 7. Plot of Rx  (squares) and Px  (diamonds) as functions of *P
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behaviour is “about 0.5”, and its vertical coordinate is “about 1”, with 
impreciseness equal to “plus / minus 50%”. Using these fuzzy values 

* *,x y  , the Monte Carlo estimator of the discounted cost of services 

 ( )PV c  for the previously estimated optimal point **P  can be found. 
As it is seen in Figure 8, the output is a LRFN, which is slightly right-

skewed. Its support is equal to [ ]979.649,1769.21 , which is -25% and 

+35%, if this interval is compared to a core of ( )PV c  (and, at the 

same time, the crisp value of  ( )PV c , which was estimated in Sec-

tion  6.2). Therefore, the parameters * *,x y  have important impact on 
the estimated discounted costs.

Moreover, a fuzzification of the parameters * *,x y  has an impact 
on the average number of the repairs. As it is seen in Figure 9, for 

[ ]*  0.25,0.5,0.75x =  and [ ]*  0.5,1,1.5y = , the relevant fuzzy aver-

age Rx  is also a LRFN, which is slightly right-skewed. Its support is 

equal to [ ]1271.46,2859.13 , which is -34% and +48%, if this inter-

val is compared to the core of Rx . Therefore, a variability of Rx  is 

higher than for ( )PV c . It also means, that an optimal value of *P  

should be found for each single analysed set of * *,x y . For example, 

0-cut (i.e., α -cut of a fuzzy number, for which 0α = ) of *P  is equal 

to [ ]3.15,4.45  for the previously mentioned values of *x  and *y . 
Estimators of ( )PV c  and statistical measures of the costs of repairs 
and replacements for the left and the right end of this 0-cut can be 
found in Table 2.

6.7.	 Numerical analysis for the fuzzified parameters of the 
costs

Apart from the parameters of the HRF, an influence of a fuzzifica-
tion of other values can be analysed. For example, a decision maker 
can be interested in finding an answer, if the constant values of re-
pairs and replacements or their variable counterparts are more prone 
to an impreciseness in an expert’s opinion. Once again, the Monte 
Carlo simulations lead to a straightforward solution of this problem, 
which can be seen in Figure 10. In this case, I assume, that the rel-

evant costs are “about plus / minus 10%”, i.e. [ ], 0.9,1,1.1R constc = , 

[ ], 2.7,3,3.3P constc =  (the plot for the fuzzified constant val-

ues, which is labelled with squares) and [ ], 90,100,110R varc = , 

[ ], 90,100,110P varc = , (the plot with circles, for the fuzzified vari-
able parts). As it is easily seen, the constant parts of the maintenance 
costs have more important impact on the estimated total costs. In both 
cases, the outputs are triangular fuzzy numbers. For the considered 
fuzzy constant costs, its support is given by +/− 1.98% (if it is com-

pared to the “crisp” estimator of ( )PV c ) and in the case of the fuzzy 
variable costs, its support is more wider (+ / − 8%).

Of course, more than one source of impreciseness, which is mod-
elled by a fuzzy approach, can be analysed. Using the Monte Carlo 
simulations, it is possible to observe interactions among many sourc-
es, e.g., the parameters of the HRF, the costs etc.

Fig. 8.	 Plot of  ( )PV c  as a fuzzy number for [ ]*  0.25,0.5,0.75x =  and 
[ ]*  0.5,1,1.5y =

Fig. 9.	 Plot of Rx  as a fuzzy number for [ ]*  0.25,0.5,0.75x =  and 

[ ]*  0.5,1,1.5y =

Table 2.	 Comparison of statistical measures of the maintenance services 
for the left and the right end of [ ]* 0P .

Measure [ ]0 3.15LP = [ ]0 4.45UP =

 ( )PV c 1758.44 968.028

Rx 2720.12 1389.72

Px 300 220

min Rc 1 1

max Rc 6.32746 6.01543

Rc 1.27363 1.27373

( )Rsd c 0.273637 0.273719

min Pc 3 3

max Pc 12.2116 12.3969

Pc 3.54795 3.54803

( )Psd c 0.547883 0.548142
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6.8.	 Summary of the results

Taking into account the previous analyses, some remarks about 
their results can be highlighted:

In the considered case, the overall discounted costs of the serv-•	
ices are smaller (about 3.39%) and the repairs are even more 
rare (about 14.21%) for the optimal solution. The costs of a sin-
gle repair or a replacement are not affected by the optimization 
procedure.
It is possible, that application of nominal values of the cash flow, •	
instead of a more realistic model with a variable interest rate, 
leads to incorrect results for the optimization procedure just like 
other statistics of the costs.
A fuzzification of various parameters of the introduced mod-•	

els is possible. For example, fuzzy values of *x  and *y  have 
a significant impact on the estimated discounted costs and the 
evaluated average number of repairs. Additionally, the optimiza-
tion procedure should be applied for each single analysed set of 
these parameters.
Using simulations and the fuzzy approach, many practical prob-•	
lems can be solved. In the considered fuzzy case, it turns out, that 
the constant parts of the maintenance costs have greater impact 
on the estimated total costs than their variable counterparts.

6.9.	 Towards a practical application

As it was mentioned, the previously presented example is a sim-
plified one. However, some of its aspects can be directly carried to 

a real life application. For example, instead of only 20 connections 
of one type, a few hundreds or even a few thousands of connections 
together with many types can be considered. It can be achieved using 
the Monte Carlo simulations, because the HRF, which is introduced in 
this paper, is a numerically very efficient algorithm. The same applies 
for the optimization procedure, which is linearly dependent on the 
number of the samples (i.e. connections).

It seems, that a more complex problem is related to an estima-
tion procedure for the applied parameters. If many connections are 
considered, then it can be quite laborious to estimate the necessary 
parameters of the HRF for each single type of a connection. In practi-
cal situations, it is also possible, that other kinds of the costs (see also 
the discussion in Section 4) and other effects (like a requirement to 
repair a whole group of connections in one time) should be taken into 
account. This directly leads to a more complicated model and longer 
time of the necessary simulations.

7. Conclusions

In this paper, a new kind of a hazard rate function for time be-
tween malfunctions of a pipeline is proposed. This HRF is a V-shape 
function, which also depends on number of previous repairs of the 
given connection. Moreover, times of malfunctions can be easily gen-
erated with the Monte Carlo simulations, if this HRF is applied. Then, 
a model of costs, which is related to a type of a performed service and 
its length, is also introduced.

These costs are dived into two parts, which facilitates an appli-
cation of this approach in real-life situations. To calculate a present 
values of the maintenance costs, the one-factor Vasicek model is used. 
It is noticed during a more detailed analysis, that the obtained results 
strictly depend on the assumed type of a discount factor (i.e. if it is 
variable interest rate or a constant yield). During this numerical analy-
sis, a behaviour of the whole WDS is simulated using the Monte Carlo 
approach. Afterwards, the costs of the maintenance services (i.e. re-
pairs and replacements) are evaluated and statistically summarized. 
In this paper, a main aim of the conducted simulations is to minimize 
these maintenance costs. Therefore, an optimization procedure, which 
is based on the Kiefer-Wolfowitz algorithm, is applied. Apart from the 
strictly crisp setup, fuzzification of some parameters of the introduced 
models is also considered. Such an application of fuzzy numbers leads 
to a better incorporation of the experts’ knowledge and more proper, 
closer to real-life situations, modelling of these uncertain parameters. 
Some relevant examples of the simulated output for both the crisp and 
the fuzzy settings are also provided.

Fig. 10.	 Plot of  ( )PV c  as a fuzzy number for [ ], 0.9,1,1.1R constc =  , 

[ ], 2.7,3,3.3P constc =  (squares) and [ ], 90,100,110R varc = ,
[ ], 90,100,110P varc =  (circles)

References

1. Amani N, Ali N M, Mohammed A H, Samat R A. Maintenance and management of wastewater system components using the condition index 
system, prediction process and costs estimation. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2013; 15(2): 161–168.

2. Broadie M, Cicek D, Zeevi A. General bounds and finite-time improvement for the Kiefer-Wolfowitz stochastic approximation algorithm. 
Operations Research 2011; 59(5): 1211–1224, https://doi.org/10.1287/opre.1110.0970.

3. Buckley J J. Simulating Fuzzy Systems. Berlin Heidelberg: Springer-Verlag, 2005, https://doi.org/10.1007/b100371.
4. Clark R M, Thurnau R C. Evaluating the risk of water distribution system failure: A shared frailty model. Front. Earth Sci. 2011; 5(4): 

400–405.
5. Fadaee M J, Tabatabaei R. Estimation of failure probability in water pipes network using statistical model. Engineering Failure Analysis 

2011; 18: 1184–1192, https://doi.org/10.1016/j.engfailanal.2011.02.013.
6. Gil M A, Hryniewicz O. Statistics with Imprecise Data. In: Meyers R A (ed.). Encyclopedia of Complexity and Systems Science. New York: 

Springer-Verlag, 2009.
7. Glasserman P. Monte Carlo Methods in Financial Engineering. New York: Springer, 2004.
8. Gonzalez A, Pons O, Vila M A. Dealing with uncertainty and imprecision by means of fuzzy numbers. International Journal of Approximate 

Reasoning 1999; 21: 233–256, https://doi.org/10.1016/S0888-613X(99)00024-9.



Eksploatacja i Niezawodnosc – Maintenance and Reliability Vol. 20, No. 1, 201856

Science and Technology

9. Homem-de-Mello T, Bayraksan G. Monte Carlo sampling-based methods for stochastic optimization. Surveys in Operations Research and 
Management Science 2014; 19: 56–85, https://doi.org/10.1016/j.sorms.2014.05.001.

10. Hryniewicz O, Kaczmarek K, Nowak P. Bayes statistical decisions with random fuzzy data – An application for the Weibull distribution. 
Eksploatacja i Niezawodnosc – Maintenance and Reliability 2015; 17(4): 610–616, https://doi.org/10.17531/ein.2015.4.18.

11. Kanakoudis V K, Tolikas D K. Assessing the performance level of a water system. Water, Air, and Soil Pollution 2004; 4: 307–318, https://
doi.org/10.1023/B:WAFO.0000044807.41719.c7.

12. Kleiner Y, Adams B J, Rogers J S. Long-term planning methodology for water distribution system rehabilitation. Water Resources Research. 
August 1998; 34(8): 2039–2051, https://doi.org/10.1029/98WR00377.

13. Kumar G, Jain V, Gandhi O P. Steady-state availability analysis of repairable mechanical systems with opportunistic maintenance by using 
semi-Markov process. Int J Syst Assur Eng Manag. 2014; 5(4): 664–678, https://doi.org/10.1007/s13198-014-0231-8.

14. Lee K H. First Course on Fuzzy Theory and Applications. Berlin Heidelberg: Springer, 2005.
15. Liu Z, Kleiner Y, Rajani B, Wang L, Condit W. Condition Assessment Technologies for Water Transmission and Distribution Systems. 

Washington DC: U.S. Environmental Protection Agency, 2012; EPA/600/R-12/017.
16. Malinowski J. A newly developed method for computing reliability measures in a water supply network. Operations Research and Decisions 

2016; 26(4): 49–64.
17. Marchionni V, Cabrala M, Amadoa C, Covasa D. Water supply infrastructure cost modelling. Procedia Engineering 2015; 119: 168–173, 

https://doi.org/10.1016/j.proeng.2015.08.868.
18. Neelakantan T R, Suribabu C R, Lingireddy S. Optimisation procedure for pipe-sizing with break-repair and replacement economics. Water 

SA. April 2008; 34(2): 217–224.
19. Nguyen H T. A Note on the Extension Principle for Fuzzy Sets. Journal Mathematical Analysis and Applications 1978; 64: 369–380, https://

doi.org/10.1016/0022-247X(78)90045-8.
20. Nowak P, Romaniuk M. Application of Levy processes and Esscher transformed martingale measures for option pricing in fuzzy framework. 

Journal of Computational and Applied Mathematics 2014; 263: 129–151, https://doi.org/10.1016/j.cam.2013.11.031.
21. Nowak P, Romaniuk M. Catastrophe bond pricing for the two-factor Vasicek interest rate model with automatized fuzzy decision making. 

Soft Computing 2017; 21(10): 2575–2597, https://doi.org/10.1007/s00500-015-1957-1.
22. Pietrucha-Urbanik K, Studziński A. Case study of failure simulation of pipelines conducted in chosen water supply system. Eksploatacja i 

Niezawodnosc – Maintenance and Reliability 2017; 19 (3): 317–322, https://doi.org/10.17531/ein.2017.3.1.
23. Rojek I, Studziński J. Comparison of different types of neuronal nets for failures location within water-supply networks. Eksploatacja i 

Niezawodnosc – Maintenance and Reliability 2014; 16 (1): 42–47.
24. Rokstad M M, Ugarelli R M. Minimising the total cost of renewal and risk of water infrastructure assets by grouping renewal interventions. 

Reliability Engineering and System Safety 2015; 142: 148–160, https://doi.org/10.1016/j.ress.2015.05.014.
25. Romaniuk M. Application of Markov chain and interest rate process for forecasting of costs of maintenance of pipelines. In: Wittmann J, 

Wieland R. (eds.) Simulation in Umwelt- und Geowissenschaften. Workshop Müncheberg 2015. Aachen: Shaker Verlag, 2015.
26. Romaniuk M. On simulation of maintenance costs for water distribution system with fuzzy parameters. Eksploatacja i Niezawodnosc – 

Maintenance and Reliability 2016; 18(4): 514–527, https://doi.org/10.17531/ein.2016.4.6.
27. Romaniuk M, Nowak P. Monte Carlo methods: theory, algorithms and applications to selected financial problems. Warszawa: ICS PAS, 

2015.
28. Røstum J. Statistical modelling of pipe failures in water networks. Ph.D. dissertation. 2000.
29. Scheidegger A, Leitão J P, Scholten L. Statistical failure models for water distribution pipes – A review from a unified perspective. Water 

Research 2015; 83: 237–247, https://doi.org/10.1016/j.watres.2015.06.027.

Maciej Romaniuk 
Systems Research Institute, Polish Academy of Sciences
ul. Newelska 6, 01-447 Warszawa, Poland
and
The John Paul II Catholic University of Lublin,
ul. Konstantynów 1 H, 20-708 Lublin, Poland

E-mail: mroman@ibspan.waw.pl


